Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
BMC Public Health ; 21(1): 605, 2021 03 29.
Article in English | MEDLINE | ID: covidwho-1158204

ABSTRACT

BACKGROUND: The COVID-19 pandemic is complex and is developing in different ways according to the country involved. METHODS: To identify the key parameters or processes that have the greatest effects on the pandemic and reveal the different progressions of epidemics in different countries, we quantified enhanced control measures and the dynamics of the production and provision of medical resources. We then nested these within a COVID-19 epidemic transmission model, which is parameterized by multi-source data. We obtained rate functions related to the intensity of mitigation measures, the effective reproduction numbers and the timings and durations of runs on medical resources, given differing control measures implemented in various countries. RESULTS: Increased detection rates may induce runs on medical resources and prolong their durations, depending on resource availability. Nevertheless, improving the detection rate can effectively and rapidly reduce the mortality rate, even after runs on medical resources. Combinations of multiple prevention and control strategies and timely improvement of abilities to supplement medical resources are key to effective control of the COVID-19 epidemic. A 50% reduction in comprehensive control measures would have led to the cumulative numbers of confirmed cases and deaths exceeding 590,000 and 60,000, respectively, by 27 March 2020 in mainland China. CONCLUSIONS: Multiple data sources and cross validation of a COVID-19 epidemic model, coupled with a medical resource logistic model, revealed the key factors that affect epidemic progressions and their outbreak patterns in different countries. These key factors are the type of emergency medical response to avoid runs on medical resources, especially improved detection rates, the ability to promote public health measures, and the synergistic effects of combinations of multiple prevention and control strategies. The proposed model can assist health authorities to predict when they will be most in need of hospital beds and equipment such as ventilators, personal protection equipment, drugs, and staff.


Subject(s)
COVID-19/therapy , Delivery of Health Care/organization & administration , Disease Outbreaks/prevention & control , Health Resources/statistics & numerical data , Pandemics , China/epidemiology , Delivery of Health Care/statistics & numerical data , Humans , Models, Theoretical , SARS-CoV-2 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL